N-Subjettiness for boosted jets

Davide Napoletano QCD@LHC '19 (Buffalo)

• Jet-Substructure techniques for boosted jets for signal/bkg disc

Particularly important for hadronically decaying colourless particles

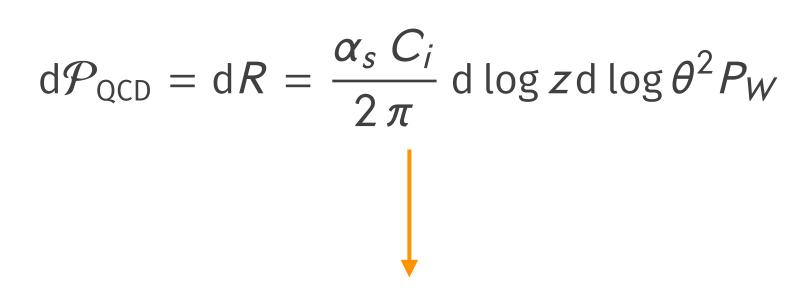
Here focus on two-pronged decays, like a W

N-Subjettiness:
$$\tau_N^{(\beta)} = \frac{1}{p_{\perp} R^{\beta}} \sum_{i \in \text{jet}} p_{\perp_i} \min(\theta_{ia_1}, \dots, \theta_{ia_N})$$

N-subjettiness

$$d\mathcal{P}_W = dR_W(x) = \lambda^2 \, dz \, d\theta^2 P_W$$

Uniform and flat in energy and angle



more soft and collinear

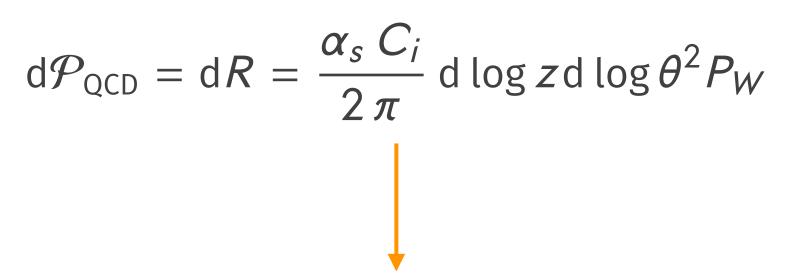
$$\tau_2 = \sum_{i \in jet} \min \left(z_i \, \theta_{i1}^2, z_i \, \theta_{i2}^2 \right)$$

$$\to \tau_2^W \sim \tau_2^{QCD}$$
However!
$$\to \tau_1^W > \tau_1^{QCD}$$

$$\to \tau_1^W > \tau_1^{QCD}$$

N-subjettiness

$$d\mathcal{P}_W = dR_W(x) = \lambda^2 \, dz \, d\theta^2 P_W$$



more soft and collinear

One then expects $au_{21}=rac{ au_2}{ au_1}$ to be a good discriminant

N-Subjettines cut

• First efforts resumming double logs in the small tau region

$$\alpha_s^n \log^{2n} \rho$$
, $\alpha_s^n \log^{2n} \tau$, $\alpha_s^n \log^n \rho \log^n \tau$

N-Subjettines cut

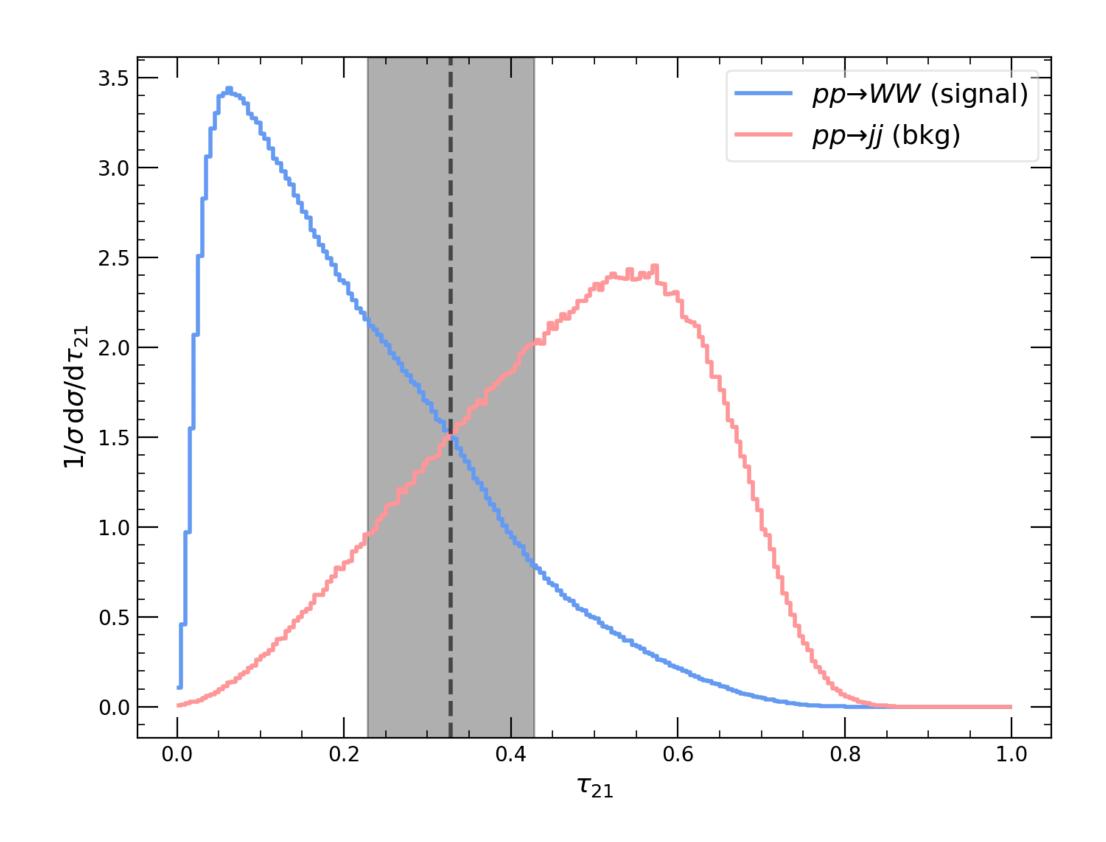
• First efforts resumming double logs in the small tau region

$$\alpha_s^n \log^{2n} \rho$$
, $\alpha_s^n \log^{2n} \tau$, $\alpha_s^n \log^n \rho \log^n \tau$

• The interesting region's clearly at much larger tau!

• Structure now more complicated, as finite terms have to be included to have correct accuracy in rho

$$\alpha_s^n \log^{2n} \rho$$
, $\alpha_s^n \log^{2n} \tau$, $\alpha_s^n \log^n \rho f_n(\tau)$



This is (in essence) the contribution we compute

N-Subjettiness cut

Small tau

$$ho_1\gg
ho_2\gg\cdots\gg
ho_n$$
 $heta_1\ll heta_2\ll\cdots\ll heta_n$

Mass is set by first emission

$$ho \sim
ho_1$$
 $au_{21} \sim rac{
ho_2}{
ho_1}$

N-Subjettiness cut

Small tau

$$\rho_1 \gg \rho_2 \gg \cdots \gg \rho_n$$
 $\theta_1 \ll \theta_2 \ll \cdots \ll \theta_n$

Mass is set by first emission

$$ho \sim
ho_1$$
 $au_{21} \sim rac{
ho_2}{
ho_1}$

Finite tau

$$ho_1 \sim
ho_2 \sim \cdots \sim
ho_n$$
 $heta_1 \ll heta_2 \ll \cdots \ll heta_n$

All emissions contribute

$$\rho = \sum_{i=1}^{n} \rho_{i}$$

$$\tau_{21} = 1 - \frac{\max_{i} \rho_{i}}{\rho}$$

N-Subjettiness cut

Small tau

$$\rho_1 \gg \rho_2 \gg \cdots \gg \rho_n$$
 $\theta_1 \ll \theta_2 \ll \cdots \ll \theta_n$

Mass is set by first emission

$$\frac{\rho}{\sigma} \frac{d\sigma}{d\rho} |_{<\tau} \sim R'(\rho) e^{-R(\rho) - R_{\tau}(\rho)}$$
First emission
Sudakov mass supp.

Finite tau

$$\rho_1 \sim \rho_2 \sim \cdots \sim \rho_n$$

$$\theta_1 \ll \theta_2 \ll \cdots \ll \theta_n$$

All emissions contribute

Next slides!!!

Finite tau

• Single out the emission with the largest rho: ρ_a

$$\frac{\rho}{\sigma} \frac{d\sigma}{d\rho} \bigg|_{<\tau} = \int_0^1 \frac{d\rho_a}{\rho_a} R'(\rho_a) \lim_{\epsilon \to 0} e^{-\int_{\epsilon}^1 \frac{d\rho_v}{\rho_v} R'(\rho_v)}$$

$$\sum_{\rho=1}^{\infty} \frac{1}{\rho!} \int_{\epsilon}^{\rho_a} \prod_{i=1}^{\rho} \frac{d\rho_i}{\rho_i} R'(\rho_i) \rho \delta(\rho - \rho_a - \sum_{i=1}^{\rho} \rho_i) \Theta\left(\frac{\rho_a}{\rho} > 1 - \tau\right)$$

• Identify two regions $\tau \le \frac{1}{2}$ and expand around $\frac{\tau}{1-\tau}$

$$R(\rho - \rho_a) \approx R\left(\rho \frac{\tau}{1 - \tau}\right) + R'\left(\rho \frac{\tau}{1 - \tau}\right) \log\left(\frac{\rho\tau}{(1 - \tau)(\rho - \rho_a)}\right)$$

$$R'(\rho - \rho_a) \approx R'\left(\rho \frac{\tau}{1 - \tau}\right).$$

Finite tau

$$\frac{\rho}{\sigma} \frac{d\sigma}{d\rho} \bigg|_{<\tau} = \begin{cases} R'(\rho) R \left(\frac{\rho \tau}{1-\tau}\right) (1-\tau)^{R'} {}_{2}F_{1} & \tau < \frac{1}{2} \\ R'(\rho) R \left(\rho\right) \left[2^{-R'(\rho)} {}_{2}F_{1} + R'(\rho)I_{ME}\right] & \tau > \frac{1}{2} \end{cases}$$

$$\mathcal{R}(x) = \frac{e^{-R(x)-\gamma_{E}R'(x)}}{\Gamma(1+R'(x))}$$

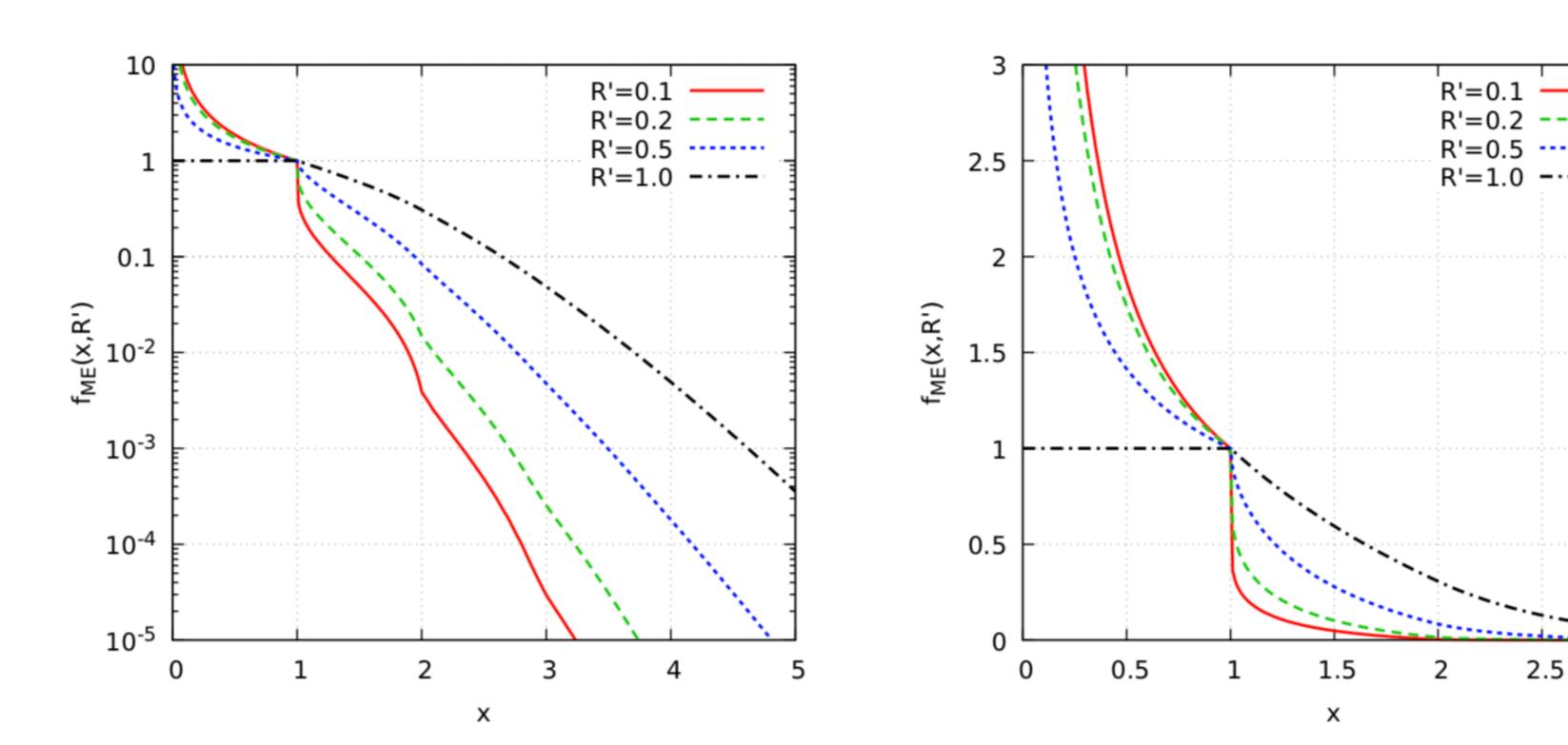
• Structure of the result is remarkably simple: scale depends on value of tau

Finite tau

• Multiple emission function, keeps track of transition points at $\tau = \frac{n-1}{n}$

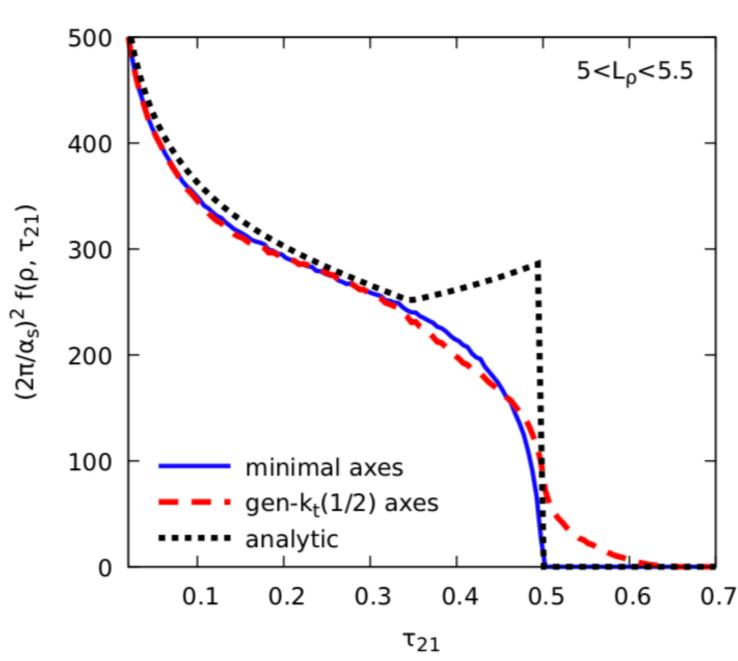
$$I_{\text{ME}} = \int_{1}^{x} \frac{du}{(1+u)^{R'}} \Gamma(R') \oint \frac{dv}{2 \ln \pi} e^{vx} \exp\left\{\frac{R'}{2} \text{Ei}(-v) \left[\log(-v) - \log\left(\frac{1}{v}\right)\right]\right\}$$

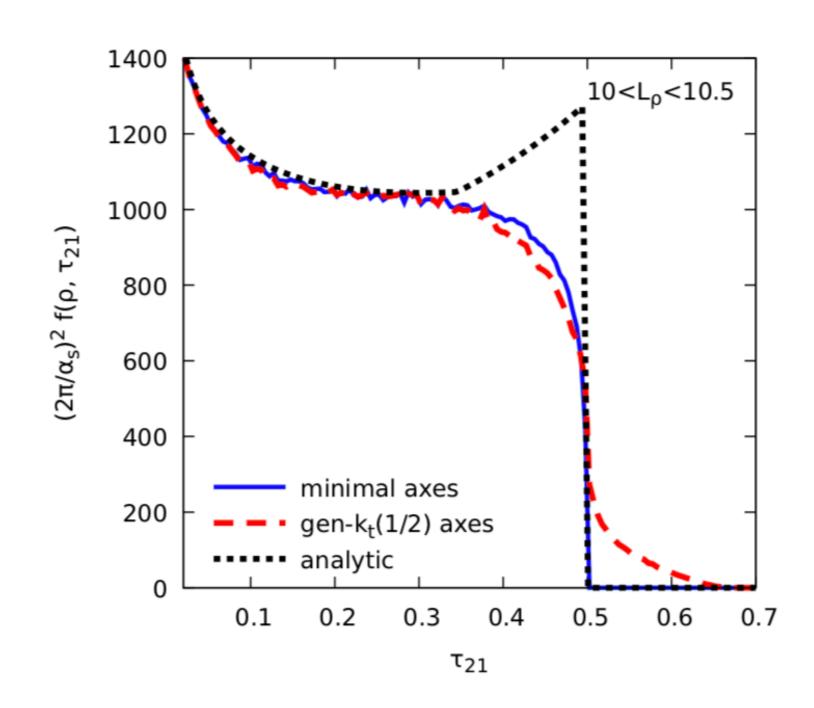
 $f_{\rm ME}(x,R')$



Checks of the minimisation procedure

minimal axes quite similar to kt





• Analytical vs exact: quite good at small/large tau

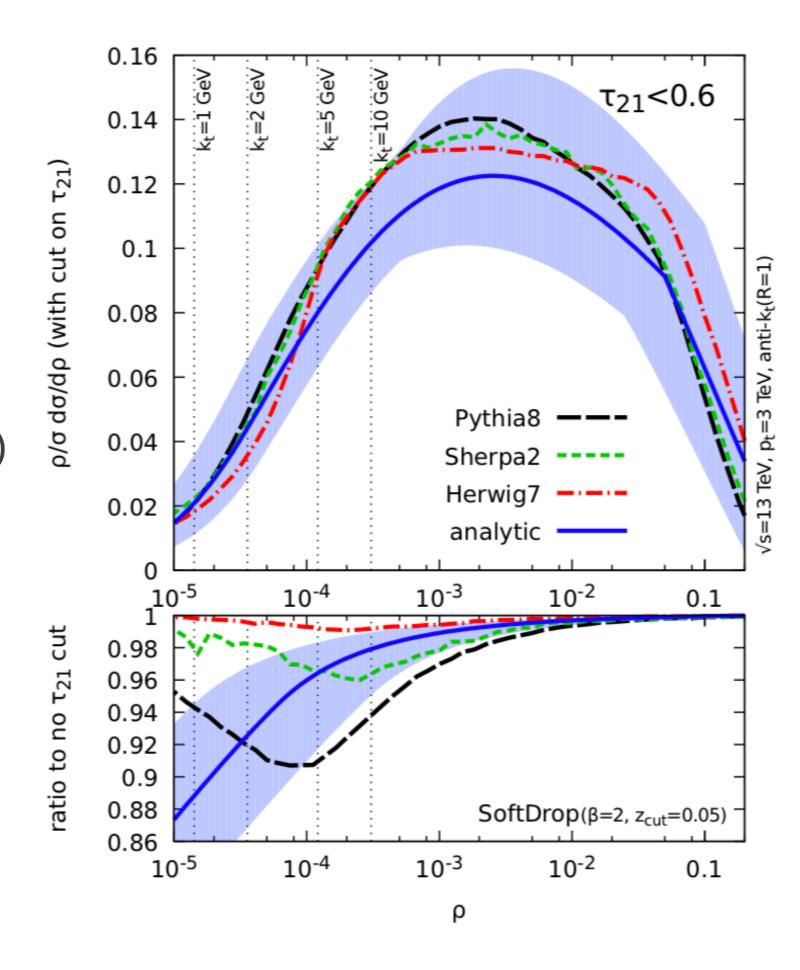
• But, it's integrated over, so beyond our accuracy (originates in neglecting large angle effects)

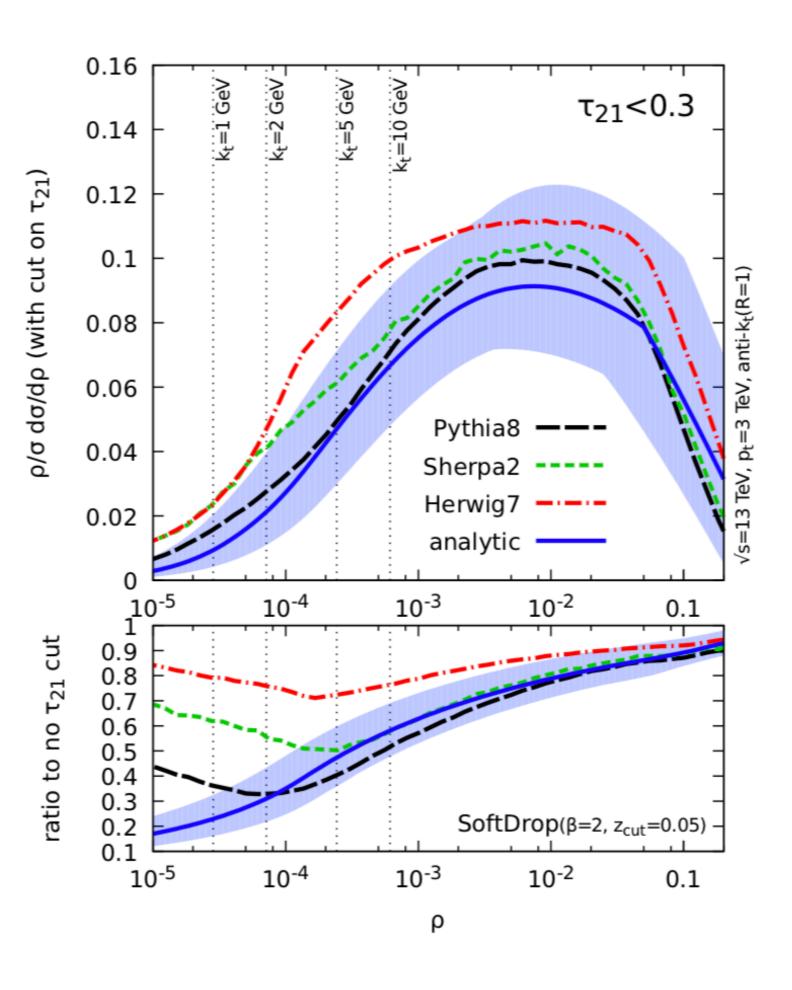
• Good excuse to do a generators comparison!

Analytical scale var is quite large (it's only LL)

 Overall quite good agreement (Herwig was before color fix)

Parton Level



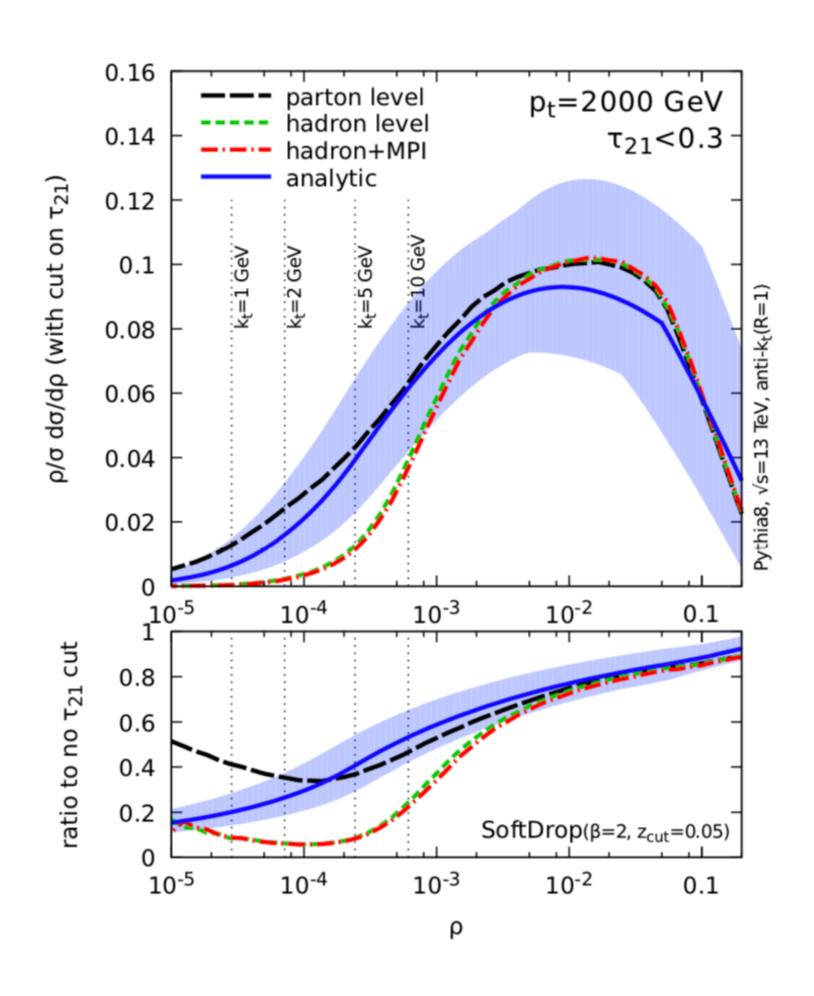


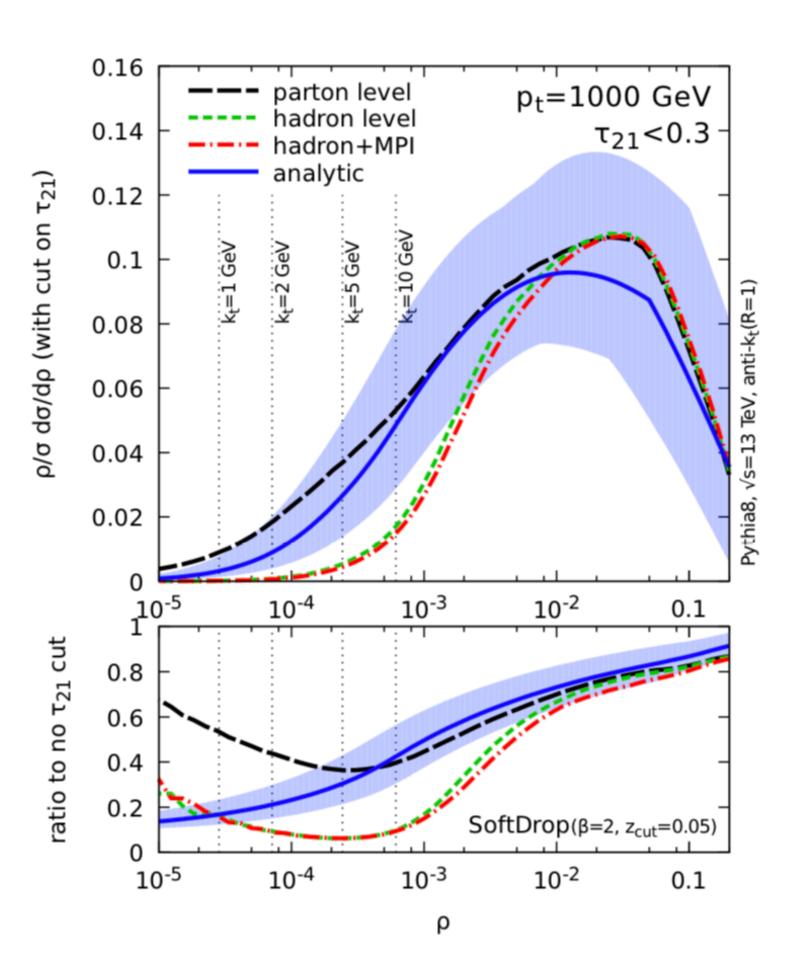
• Clearly no control over NP-region

• still quite large effects in perturbative region

• rest is, over all, well under control

Hadron Level

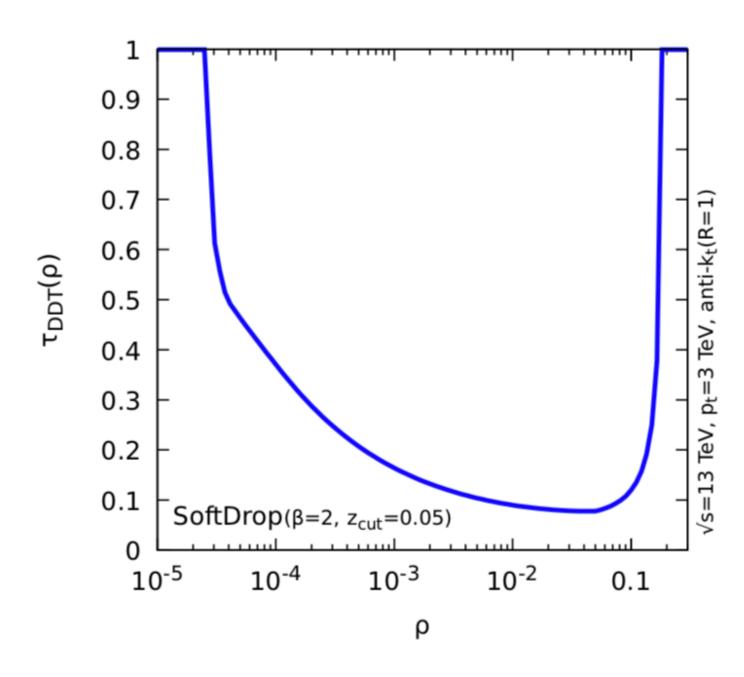


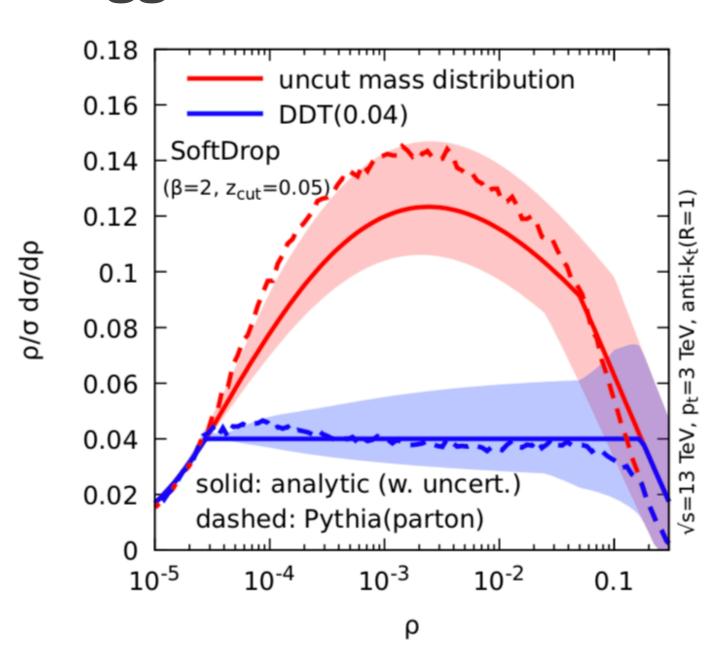


Find the value of tau that makes distribution flat

 Not necessarily an easy task in general, quite easy having analytical control

Decorrelated taggers





To show-off we do it and seems to be working pretty reliably

Conclusions

• Jet-substructure has been successfully used for discrimination problems

• Analytical calculations in this field have also helped introducing new observables

However often oversimplifications to overcome difficulties

- This calculation addresses some of them, and we produce some results with it!
 - The important thing is that with an analytical calculation one is able to extract some physics information on the problem at hand